






























that the Ni diffusing out of the austenite is making the austenite less stable, so on cooling, the 
austenite transforms to martensite instead of being maintained as retained austenite. Thus, with 
increasing peak temperature, there is less retained austenite present at room temperature because 
the Ni has begun to homogenize across the microstructure. The LEAP results can also help to 
explain the low toughness and high strength of the ICHAZ. Region C in the GT AW is an ICHAZ 
region, and the reason for that was determined from the hardness of the simulated HAZ regions. 
The hardness of the SCHAZ, which was heated to a peak temperature of 550°C is 331 ± 5 HV. 
From the hardness plot in Figure 9, the hardness of the base metal is 335 ± 6 HV. This shows that 
there is no statistical d ifference in the hardness of the base metal or the SCHAZ. Since the hardness 
of region A in the OTA Wis 360 HV, which is harder than the base metal, this suggests that region 
A is the beginning of the ICHAZ. Therefore, regions A through Dare part of the ICHAZ. As was 
previously described, no carbides were found in region C in the LEAP reconstructions. As shown 
in Table 1, the carbon content of the Ni-rich region in region C is 2.67 ± 0.11 at% which is much 
higher than any other region. This suggests that a carbide has dissolved in this region. Since the 
ICHAZ regions have half as much austenite as the base metal, some of that austenite is 
transforming to as-quenched martensite on cooling. Therefore, this high carbon austenite is 
transforming to martensite during cooling. The hardness of as-quenched martensite is directly 
proportional to the carbon content, so this high carbon martensite is likely very hard and can act 
as a local brittle zone26. Since carbon is a fast diffuser, at the higher peak temperatures there is 
more time for diffusion so the carbon can homogenously distribute over the microstructure, 
thereby eliminating the high carbon martensite, so the toughness is higher in the 1l50°C, 1250°C, 
and 1350°C peak temperature samples. Therefore, the cause for the high strength and low 
toughness in the ICHAZ is local brittle zones caused by high carbon martensite. This is significant 
because it was previously thought that the retained austenite was the sole factor in determining the 
toughness of 10 wt% Ni steel. However, the ballistic resistance of the steel was not investigated in 
this study and the results for ballistic resistance and toughness can be very different, therefore, it 
is suggested that ballistic resistance studies be performed as a function of peak temperature as well. 

Figure 13. SEM micrograph of the samples used for the heating rate studies that was heated at 
1 °C/s to a peak temperature of 1000°C. 
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Figure 14. SmartWeld calculated thermal cycles for a heat input of 15001/mm. The peak 

temperautre HAZ designations are based on the results of the heating rate study. 
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Figure 15. Variation in retained austenite, yield strength, and Charpy impact toughness in 10 
wt% Ni steel as a function of peak temperature. 
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Conclusions 
Recent ONR-sponsored research lead by Lehigh University (in collaboration with Northwestern 
University) has developed a fundamental understanding of phase transformations and mechanical 
properties in the HAZ ofNUCu-140 steel and 10 wt% Ni steel. The following conclusions can 
be drawn from this work: 

1. NUCu-140: 
a. Welds on NUCu-140 exhibit local softening in the fusion zone and heat-affected 

zone as a result of the fusion weld thermal cycle. 
b. Multipass weld simulations did not produce an increase in hardness of the heat­

affected zone after a high initial peak temperature followed by a lower secondary 
peak temperature. MatCalc simulations indicate that the time is too short 'to 
promote significant re-precipitation of the Cu-rich precipitates during the 
secondary weld thermal cycle. 

c. Isothermal post-weld heat treatments of GT A welds at 773 and 823 K (500 and 
550°C) demonstrated an increase in hardness of the fusion zone and heat-affected 
zone to levels above that of the base metal. Short aging times of 0.25 hour at 823 
K (550°C) and 1 hour at 773 K (500°C) were adequate to increase the hardness of 
these zones to levels above that of the base metal. 

d. APT results and MatCalc simulations demonstrated that the softening in the heat­
affected zone of the NUCu-140 weld is the result of the dissolution of the Cu-rich 
precipitates during the heating portion of the weld thermal cycle followed by little 
or no re-precipitation upon cooling. The dissolution of Cu precipitates in these 
zones combined with their negligible coarsening at aging temperature of 773 K 
(500°C) permits the use of a simple direct-aging treatment at 773 K (500°C) 
(without a prior solutionizing-quenching step) to recover the hardness in softened 
zones in NUCu140 without affecting the BM hardness. 

2. 10 wt% Ni steel: 
a. The Ac1 and Ac3 temperature of the steel are dependent on heating rate. The Ac1 

and Ac3 temperatures when the sample is heated at 1°C/s are 836 K (563°C) and 
1121 K (848°C), respectively, and the Ac1 and Ac3 temperatures when the sample 
is heated at 1830°C/s are 864 K (591 °C) and 1324 K (1051°C), respectively. 

b. There is a large dependence on heating rate for the Ac3 temperature. This is 
significant for welding because the large temperature range between the Ac1 and 
Ac3 temperatures at high heating rates will produce a large ICHAZ region. The 
mechanical property results demonstrate that this is the most concerning region of 
the HAZ because of the low toughness. 

c. The CCT diagram shows that martensite will form over a very wide range of 
cooling rates, which reflects a very high hardenability of 10 wt% Ni steel. The Ms 
temperature is 685 ± 38 K (412°C) and the Mrtemperature is 466 ± 8 K (193°C). 

d. With increasing peak temperature of the thermal cycle, the volume fraction of 
retained austenite decreases. The LEAP tomography results suggest that this is 
due to the destabilization of the austenite brought on by the diffusion of Ni out of 
the austenite. 
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e. The toughness is lowest in the ICHAZ regions. The low toughness is a result of 
the dissolution of M2C carbides during welding. When the carbides dissolve, they 
leave behind a region of high carbon content, which when cooled, transforms to 
brittle, as-quenched martensite. 
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